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Abstract

We propose HYBOOD, a hybrid out-of-distribution model
based on normalizing flow followed by a simple linear clas-
sification model. In real-world settings, it is known that data
corruption has a strong influence on model degradation; for
example image quality like noise, blur and image geome-
try like translation, scaling, rotation. MNIST-C, CIFAR10-
C are the general synthesized datasets to measure model ro-
bustness and corruption difficulty in terms of covariate and
semantic shifts. HYBOOD shows that the separability be-
tween in-distribution, covariate shift, and semantic shift can
be represented by generative distribution distance and log-
scale density log(p(x)). We also find out the types of covari-
ate shifts are ordered by corruption difficulty ranking (CDR)
for the datasets. To the best of our knowledge, this is the first
method to measure data corruption difficulty with generative
models using Wasserstein Distance, Mutual Information and
Minimal Description Length. In this paper, we pose inter-
esting experimental results that the generative model tested
on MNIST-C is most deteriorated by fog, impulse noise and
stripe corruption types. This can be interpreted that those
types are challenging corruptions to the generative model in
uncertainty and complexity. By training in-distribution data
only, HYBOOD achieves out-of-distribution detection per-
formance for distinguishable covariate and semantic shifts,
and quantifying covariate shift ranking.

Open-set problems require trustworthy models for up-to-
date deep neural networks in that for example as an image
classifier in a self-driving car the model can face a new in-
put class (e.g. a passing wild animal on highway) not seen
in the training time. Out-of-distribution (OOD) detection is
crucial to solve such a scenario under broad taxonomy scope
as in (Yang et al. 2024), where anomaly detection, novelty
detection (e.g. detecting the new data different from all train-
ing data), and outlier detection are categorized by induc-
tive and transductive learning tasks. OOD detection methods
are extended from discriminative to generative models since
deep generative models are effective unsupervised learning
exactly aware of the underlying distribution of the training
data via exact marginal likelihood. Unlike the popularity of
the deep generative models, recent works have shown that
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deep generative models can assign higher likelihood to out-
of-distribution data than the training data (Nalisnick et al.
2019c; Choi, Jang, and Alemi 2019).

As a causal explanation and solution to the problem, thor-
ough methods of generative deep neural networks are pro-
posed using such as estimating image complexity (which is
the degree to distinguish meaningful contents from noise),
likelihood ratio, or frequency-regularized learning (Nalis-
nick et al. 2019a; Serra et al. 2020; Zhang, Goldstein, and
Ranganath 2021; Havtorn et al. 2022; Cai and Li 2022).

As yet the detection of covariate and semantic shifts by
deep generative models is less explored. (Bai et al. 2023)
proposed a unified learning framework, SCONE, that is
capable of simultaneously generalizing to covariate shift
while robustly detecting semantic shift by training a mix-
ture of in-distribution (ID), covariate shift and semantic shift
as out-of-distribution. The model, however, trains both la-
beled in-distribution data and unlabeled wild data and de-
tects OODs via energy margin. We had a speculation that
generative models may be an alternative to the discrimina-
tive OOD detection since the generative models can gener-
alize to cover covariate shifts with augmentation so covari-
ate shift plays a pivotal role in addressing representation be-
tween in-distribution and semantic shift as our hypothesis
schematically depicted in Figure 2. We also assumed that
the shift-aware deep generative model’s generalization via
covariate shift might be affected by coverage levels due to
the shift’s complexity. Corruption datasets like MNIST-C
and CIFAR10-C provide various corruption types that can
be used in the difficulty measure of covariate shifts.

In this paper, we propose HYBOOD, a simply modified hy-
brid model based on the architecture of (Nalisnick et al.
2019b) to estimate corruption difficulty and detect out-of-
distribution shiftness in Figure 1. To simplify the structure
of the model, we replace a generalized linear model (GLM)
with a compressed GLM, global average pooling and linear
model (GAPLM). GAPLM takes latent features in the gen-
erative model and plays similar role as a penultimate layer
described in (Zhou 2023; Liu et al. 2022). As explained in
(Lin, Chen, and Yan 2014), global average pooling by the
mlpconv layers enables better approximation to the confi-
dence maps than GLMs. Normalizing-flow density distribu-
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Figure 1: HYBOOD architecture. Based on the DIGLM, global average pooling from the latent space in the normalizing flow
is used for selective classification. From the latent information, the model measures the distance between a training and a
test sample using Wasserstein Distance (WD), Mutual Information (MI), and log(pg(x)). Independently image complexity is
calculated by Minimum Discription Length (MDL) conclusively as a measure of corruption difficulty and OODness.

Figure 2: Schematic diagram of IDs (with augmented in-
distribution) and OODs (covariate, and semantic shift) with
samples for each distribution. A deep generative model
trained on MNIST is generalized to augmented distribu-
tion, overlapped with covariate shift. Semantic shift is far-
thest away from in-distribution. However the relative dis-
tance may be changed for most difficult covariate shift types
expressive as least or no intersection with in-distribution, for
example, like the top low of Figure 5.

tion for given data with uncertainty measures could provide
the plausible boundary to detect OODness how much the
data is deviated from the training distribution. For example,
the generative distributions trained on MNIST may mediate
between in-distribution and semantic shift in the difficulty
level of covariate corruption types as assumed in Figure 2.
This is the key idea to estimate corruption difficulty and dis-
tinguish covariate shift and semantic shift on the hybrid gen-
erative model.

Motivated by (Ozair et al. 2019; Hendrycks and Dietterich
2019) that each corruption distribution can be represented by
Wasserstein Distance and log p(x) as seen in Figure 3, the
density distributions between ID, augmented ID, covariate,
and semantic shift trained on MNIST-C were found to be
justifiably matching our hypothesis of Figure 2.

Through our proposed method, we observe that the corrup-
tion types of MNIST-C and CIFAR10-C are sorted by the
uncertainty measures highly consistent with other related
works. Also we show that log density distributions are re-
lated to the corruption difficulty and accuracy we ranked,
and each uncertainty measures tend to capture different cor-
ruption types.

Our contributions for hybrid out-of-distribution with corrup-
tion estimation are as follows:

1. Corruption difficulty ranking: we measure corruption dif-
ficulty for standard MNIST-C, CIFAR10-C using distri-
bution metrics (e.g. Wasserstein Distance, Mutual Infor-
mation) extracted from the latent space and image com-
plexity metric (e.g. Minimal Discription Length) for co-
variate shift types.

2. Covariate and semantic shiftness: HYBOOD quantifies
covariate and semantic shifts based on a hybrid deep gen-
erative model. Of the interesting points, the log density
distributions of ID, covariate, and semantic shift are ob-
served to be located according to corruption difficulty
ranking. The more difficult the covariate shift is, the far-
ther from the semantic shift for MNIST-C.

3. Uncertainty: we show the corruption difficulty ranking
corresponds to aleatoric and epistemic uncertainty. CDR
is an agnostic prior of model and data uncertainty based
on normalizing flow model and image complexity esti-
mation.

Related works
Out-of-distribution detection

As deep neural networks are used in many safety-critical
cases, the reliability and trustworthiness of the decision of
the models attract great attention. One of the model ro-
bustness techniques is out-of-distribution detection to decide
whether a new input sample is in the training distribution or
in a new unseen distribution. Out-of-distribution can be sim-



ply expressed as q(y, x) # p(y, ). where p is source (train)
distribution and q is target (test) distribution.

Generally OOD detection can be categorized into
classification-based, density-based, and distance-based
methods (Yang et al. 2024). Breaking down out-of-
distribution for detection stages, it is divided into
training-time and inference-time OOD detections, in
which inference-time methods are simple to adopt to
various model architectures. But since the scoring functions
are based on the output of a model, it is hard to anticipate to
have a safety-aware learning objective. As a solution, OOD
detection can suffice through out-of-model-scope detection
in order to reject unsafe predictions during inference
(Guérin et al. 2023).

Though discriminative model’s prediction p(y|x) is typi-
cally accurate on i.i.d test inputs, it can yield overconfi-
dence in case of out-of-distribution inputs. Thus, density
model p(x) may be a support to decide when to trust p(y|x)
(Bishop 1993). (Nalisnick et al. 2019b) proposed a hybrid
of generative and discriminative model using normalizing
flows (NF) to compute exact density p(x) and p(y|x) in a
single feed-forward pass.

Hybrid models

While normalizing flow models are powerful in many cases,
NF in itself does not show as much performance as in out-of-
distribution detection because the distance between ID and
OOD on input space is relatively close and p(x|D) has no
semantic information, which is related to target class infor-
mation; for example in Colored-MNIST the target classes
may be variable such as digits or colors depending on defi-
nition.

To overcome the restriction of OOD detection based on
NF architecture, (Zhang et al. 2020) combines deep neu-
ral networks and NF, where gradients are updated alterna-
tively between the flow model and the classifer. (Cao and
Zhang 2022) uses spectral normalizing in which the gradi-
ents of the NF and DNN are propagated separatively instead
of jointly at each training step. HYBOOD is the variant of
the DIGLM (Deep Invertible Generalized Linear Model) of
(Nalisnick et al. 2019b). The difference between HYBOOD
and DIGLM is that HYBOOD instead applies global av-
erage pooling from the latent distribution to classify. The
model consists of a compressed GLM stacked on top of an
invertible generative model (Kingma and Dhariwal 2018).
The exact joint distribution p(y, ) can be computed by the
neural hybrid model evaluating predictive accuracy and un-
certainty altogether. The generative density p(x) is used for
out-of-distribution detection.

Data complexity and likelihood based generative
models in OOD detection

(Serra et al. 2020) suggests that image complexity affects
excessive influence on the likelihood of generative mod-
els and solves the problem by using likelihood ratio simi-
lar to Bayesian model comparison. The visual complexity
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Figure 3: HYBOOD separates ID and OODs (covariate shift,
and semantic shift) for MNIST, MNIST-C, Fashion-MNIST.
These distributions are placed in a similar manner described
in Figure 2 as generative densities. The glass blur corruption
is ranked forth in CDR.

and data corruption are related to the likelihood vs. empiri-
cal KDE. For example, the SVHN street sign dataset, com-
paring to CIFAR10, has lower visual complexity resulting in
higher likelihood.

Model misestimation can be another problem in generative
OOD models (Zhang, Goldstein, and Ranganath 2021). The
authors use estimation error as a solution to the failure rather
than the misalignment between likelihood-based OOD de-
tection and out-of-distributions.

Covariate and semantic shifts

Suppose a training dataset is from a source distribution
p(x, y), which is used for a predictive model p(y|x). If a
test dataset has a target distribution ¢(x, y) which is dif-
ferent from the source distribution, p # ¢, this is called
distribution shift or dataset shift (Murphy 2023). Covari-
ate shift, also called domain shift, represents that the dis-
tribution of features, p(x), changes and p(y|x) is fixed. It
is common that same trees can have different visual images
in each season on satellite imagery, and digits of different
colors with class 1 are the same label in colored MNIST,
and the backgrounds of pictures taken cows may be various
grass plains. Semantic shift represents a kind of distribution
shifts that the source domain is p(x)p(y|x), whereas target
domain is ¢(x)q(y|x) which means the image and label are
all changed from source to target.

Of distribution shifts, HYBOOD detects covariate and se-
mantic shifts with corruption estimation of the covariate
shift using corruption datasets. As out-of-distribution detec-
tion has a lot of attention in open-set applications, combined
methods to deal with covariate and semantic shifts are pro-
posed (Averly and Chao 2023).

In deep neural networks, test risk can be deduced first by



decomposing the covariate shift into ¢(z, y) = q(x)q(y|x),
and from ¢(y|z) = p(y|x), then

i, / d o(x) / dy pyl)l(f (@, w),y)

where [ is a loss function, f is a predictive model and w is
weight parameters of f, which is different from the training
risk (Huang, Li, and Smola 2021). It is necessary to find the

density ratio, [ dap(x) % f (), but the density estimation
is difficult due to the tractability. Conditional class probabil-

: _ _ () _ q(x) _ ry=—1lz)
ity r(y = 1|x) = p(m’;ﬂ(m), o= % = Tl(’y:”m) can be

used to estimate to decide whether the data have covariate
shift which is a corrected training with reweighting loss.

(Balakrishnan et al. 2020) addresses an observational
method for face recognition measuring covariate bias like
skin, gender, hair length, age and facial hair and shows that
there exists a ¢(x) such that Rlq, f] > R|[p, f] + o where
Rlp, f] = Egyll(y, f(x))]. It implies that covariate-
shitfted samples have larger mean and variance of loss than
in-distribution ones (Huang, Li, and Smola 2021). (Yang,
Zhang, and Russakovsky 2024) shows that covariate shift
is more sensitive than semantic shift and presents a clean
semantic dataset that minimizes the inferences of covari-
ate shift. It is also known that neural networks do not gen-
eralize under covariate shift (e.g. IMAGENET-C dataset)
(Hendrycks and Dietterich 2019). In (Benmalek et al. 2022),
assuming a dataset where each image has additional at-
tributes of the classes (e.g. “deflated” of ball”’) enables to
find out more complex semantic shifts. The authors define
static shift such as simply a shift in relative frequency of
classes between train and test sets.

Corruption dataset

The corruption estimation as a vulnerability (like impulse
noise) for the corruption datasets can be helpful in trustwor-
thy applications to protect image scam or fraud such as fake
face recognition, and even in satellite imagery (Chen et al.
2021).

To measure model robustness, corruption datasets like
IMAGENET-C, MNIST-C are used in computer vision
(Hendrycks and Dietterich 2019; Mu and Gilmer 2019). The
IMAGENET-C, MNIST-C datasets consist of 19, 16 corrup-
tion types. Originated from IMAGENET-C and CIFARI10-
C, MNIST-C is tailored to MNIST to measure out-of-
distribution model performance.

(Kong et al. 2023) provides 18 corruptions including
three categories for out-of-distribution depth estimation: (1)
weather and lighting conditions, (2) sensor failures and
movement, and (3) data processing anomalies.

Corruption design MNIST-C is a collection of images
with the four corruption principles: (1) non-triviality, (2) se-
mantic invariance, (3) realism, and (4) breadth. Corruptions
are designed to degrade the accuracy of models. Computer-
vision models can be failed by the corruptions, whereas hu-

man vision perceives the labels without failure. Since image
corruption happens in real-world settings, sensors, environ-
ments, and physical factors are included in the dataset by
considering redundancy with other corruption datasets.

Method

As shown in Figure 1, in the first stage HYBOOD learns the
in-distribution data using GLOW-based normalizing flow
(Kingma and Dhariwal 2018), and the out-of-distribution de-
tection stage is preceded to measure corruption difficulty for
covariate shifts. We formulate the training model architec-
ture and key corruption metrics in this section.

HYBOOD model

Followed by the DIGLM architecture (Nalisnick et al.
2019b), HYBOOD consists of a GLOW-based generative
normalizing flow and a linear model by global average pool-
ing. GLOW is 1x1 convolutions with »°, >, 51 q(x; ¢) +

hjw; log | det W;| for log ‘%‘:

s1,4(x; @) is a scaling operator used in ActNorm and Affine
Coupling Layer, h;, w; are size of height and width in layer
I and W, is weight parameters in layer [.

as in Equation 1 where

We define a model of the joint distribution p(x, y) with fea-
ture and label pair («,, y,) by GAPLM on the output of a
normalizing flow:

P(Un, Tr; 0) = p(yn|Tn; w, @) p(xy; @)
_ e . f¢
= Dl f (@ B):w) po(f(@n: ) \

oz,

)

In GAPLM, z’ = GAP(z) from the latent feature z, acts
as a penultimate layer to the classifier where GAP (Szegedy
et al. 2015) means global average pooling.

p(ynl?’) = g(z";w)

It is classification probability where g is a classification
function with a few MLP layers.

The learnable parameters are 8 = {¢, w} where ¢ is pa-
rameterized in the predictive and generative components,
and w is only in the predictive component.

Corruption estimation with uncertainty

(Hendrycks and Dietterich 2019) scores IMAGENET-C
across five corruption severity levels as a classifier’s robust-
ness and corruption difficulty. Corruption Error (CE) is a
standardized aggregate performance measure that calculates
the deviation of error rate from the model trained on a clean
dataset. Different from CE, CDR has no additional test stage
at each level of severity which directly measures distribu-
tional distances from the HYBOOD, and image complexity
from the input data in view of model and data uncertainty at
once (See Analysis section in more detail).



MI, WD, and MDL  The mutual iAnformation between two
different random variables X and X is defined as follows:

I(X; X) £ Dew (p(x, 2), p(2)p(#))

- Z Z p(z, ) log pa,2)

ik p(2)p(2)

which can be intrepreted as how similar the test input is with
the training data in terms of image corruption level (training
data as a criterion) depicted as the intersection between two
distributions in Figure 1.

We apply Wasserstein distance to measure as how much out-
of-distribution moves from in-distribution as a transport.

W,(P,Q)=( inf x — 2|[Pdy(X, X))7
W(P.Q) = (_int [ |l = a7 (X, )

where J(P,Q) denotes all joint distributions ~y for (X, X)
that have marginals P and (). Here each random variable
represents Zypqin and z;.s¢. This metric tends to capture the
noise types in corruption data (See Analysis section).

As MI is a dependency measure between two random vari-
ables, it is zero when two distributions are independent and
goes to H(X), entropy of X, when two distributions are
identical. In representation learning perspective, (Ozair et al.
2019) provides Wasserstein dependency measure (WDM)
as a posterior, a modified version of mutual information
where KL divergence is changed to Wassererstein distance.
The combination of mutual information and Wasserstein dis-
tance in the latent space of the generative model that we
propose to capture salient features as a measure of model
uncertainty, corruption difficulty and out-of-distribution can
be the prior in terms of KL divergence of WDM. This agrees
to our motivation and hypothesis to use the metrics in nor-
malizing flow.

Dy (p(x),p(2))
A EE—— Wp(p(x)’p(

agnostic

Wy (p(x, 2), p(x)p(2))

WDM (posterior) prior

where each distribution stands for p(x) ~ pe(z) as a
model uncertainty from the normalizing flow in Eq. 1 in that
pe(z) ~ f(x; ¢p) is included both discriminative and gener-
ative components in the model.

To measure aleatoric uncertainty with image complexity, we
introduce Minimum Discription Length (MDL) score de-
scribed in (Mahon and Lukasiewicz 2023) that represents
how hard an input is to attain to the desired quality. MDL is
an implicit inductive bias for complexity measure.

Corruption difficulty ranking (CDR) (Kendall and Gal
2017) introduces data (or aleatoric) uncertainty and model
(or epistemic) uncertainty in computer vision. Normalizing
flow based uncertainty is also introduced using ensemble
(Berry and Meger 2023). We set up a corruption difficulty

metric that corruption datasets can be quantified as a com-
bination of intrinsic data complexity and extrinsic unaware-
ness degree from the model.

By unifying the mutual information, Wasserstein distance,
Minimum discription length, a corruption difficulty rank-
ing (CDR) is proposed. Minimum discription length (MDL)
calculates image complexity through hierarchical clustering
of patches (Mahon and Lukasiewicz 2023; Dwivedi et al.
2023):

CDR = aWDrank' + BML’ank + 'YMDLHJnk

where WD, 1, MLqnk, MDL,.4,,, mean ranking values of
WD, MI, MDL resepctively and «, /3,y are weight coeffi-
cients. For example, in Table 1, fog is the fifth, fourth and
first rankings in WD, MI and MDL respectively. Thus, the
score of fog is 5 +4 + 1 = 10 that the lowest score matches
the most difficult corruption when letting «, 3, as 1. The
most corrupted images correspond to top rankings in CDR
that the impulse noise and fog corruption types are, for ex-
ample in MNIST-C, in the top-ranked group with respect to
mutual information (See Table 1).

Experiments & Analysis

We have experimented two sets of training (ID) data and
OOD data which contain (corrupted) covariate shifts and
semantic shifts individually: {MNIST, MNIST-C, Fashion-
MNIST}, {CIFAR10, CIFAR10-C, SVHN}. In the follow-
ing subsections we analyze the generative density distribu-
tions and CDR as a uncertainty metrics. Finally, the com-
parison of HYBOOD network architecture is given in the
ablation study.

Datasets

* MNIST (Deng 2012): Used as training data.

e MNIST-C (Mu and Gilmer 2019): Used as covariate
shift (corruption) data containing various kinds of cor-
ruptions i.e. brightness, canny edges, fog, dotted lines,
glass blur, etc.

* Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017): Used
as semantic shift data.

* CIFAR10 (Krizhevsky 2009): Used as training data.

* CIFAR10-C (Hendrycks and Dietterich 2019): Used as
covariate shift (corruption) data containing various kinds
of corruptions brightness, contrast, elastic transform, im-
pulse noise, snow, zoom blur, etc.

e SVHN (uni 2022): Used as semantic shift data.

Training

We heuristically set the hyperparameters of HYBOOD to
optimize the model for OOD’s separability and difficulty
measure. In a similar way to (Nalisnick et al. 2019b), we
set A, the trade-off weight between p(y|z) and p(z), as
0.75,0.30 in MNIST, CIFAR10 respectively. We use Adam
optimizer (Kingma and Ba 2017) with a learning rate 0.0001
in both and weight decay 0.001, 0.005 in MNIST, CIFAR10
respectively.
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Figure 4: Accuracy vs. MI and MI vs. WD for CIFAR10-C. (a) plot of Wasserstein Distance and F1-score, and (b) plot of

Wasserstein Distance and Mutual Information.
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Figure 3: log p(x) plot for MNIST-C. The first row shows
the top-3 rankings and the second row shows the bottom-3
rankings from Table 1. The red, blue, green color distribu-
tions represent ID, covariate shift, and semantic shift respec-
tively where ID is MNIST and semantic shift is Fashion-
MNIST.

Density distribution of covariate, semantic shifts

Figure 5 of log p(x) are ordered by CDR of Tables 1 on
MNIST. Very interestingly the in-disribution pushes aside
covariate shift and semantic shift from the center for the
most uncorrupted type (e.g. scale); in other words, ID is lo-
cated relatively in-between for the easiest corruptions. On
the contrary, the covariate shift distributions of hard cor-
ruptions are far away from in-distribution like fog, impulse,
stripe as seen in the first row of Figure 5. Furthermore, the
covariate shifts further away from ID than semantic shift
are interpreted as very hard corruptions requiring a lot of
generalization for the generative models. From the diagram
of Figure 2, this case may be at the highest level of ambi-
guity that the semantic shift distribution resides relatively
in-between for the hardest corruptions contrary to the easi-

impulse noise speckle noise contrast

elastic transform jpeg com;ﬁression

Figure 6: log p(x) plot for CIFAR10-C. The first row shows
the top-3 rankings and the second row shows the bottom-3
rankings from Table 2. The red, blue, green color distribu-
tions represent ID, covariate shift, and semantic shift respec-
tively where ID is MNIST and semantic shift is SVHN.

est case mentioned above. Also similar as (Nalisnick et al.
2019b), semantic shifts regarded as OODs have a separable
aspect on HYBOOD’s log density for all corruption types;
specifically, distinctly separable for simple MNIST-C and
partially separable for more-semantic CIFAR10-C.

Corruption Difficulty Ranking

Tables 1 and 2 show CDR of the corruption data for MNIST
and CIFARI10 respectively. Each corruption difficulty met-
ric functions to rank different corruption characteristics that
WD tends to rank noise type in highest, MI to rank noise
and quality, and MDL to rank quality for CIFAR10-C; WD
to rank noise, MI to rank content, and MDL to rank quality
for MNIST-C. In overall, CDR is a unified corruption mea-
sure to quantify corruption types of image quality, noise, and
contents (or blur, noise, digital and weather).



Table 1: Corruption Difficulty Ranking for MNIST-C. The corrup-
tion types are orderd by Corruption Difficulty Ranking. The arrow
directions (f, |) in the parenthesis of the three metrics represent
that the more corrupted, the higher for WD, MDL and the lower
for MI. Each value in the table describes the score and rank of
a corresponding corruption type. IQ, RN, Con, Geo stand for the
corruption categories of image quality, random noise, content and
geometry respectively.

Table 2: Corruption Difficulty Ranking for CIFAR10-C (in the
same way as in Table 1)

CIFAR10-C Ranking

MNIST-C Ranking

Corruption WD(?1) MI) MDL(1)
impulse noise(RN) 1.012E+05 (1) 097 (1) 20.13 (7)
speckle noise(RN) 5.551E+04 (3) 1.27 (5) 19.94 (10)
contrast(/Q) 3.766E+04 (5) 1.01 (2) 19.83(13)
gaussian noise(RN) 6.396E+04 (2) 1.19 (3) 19.66 (15)
motion blur(/Q) 2.811E+04 (10) 1.38(7) 20.30 (4)
zoom blur(/Q) 2.750E+04 (15) 1.45(10) 20.42 (1)
fog(1Q) 2.973E+04 (7) 1.25(@4) 19.47 (16)
shot noise(RN) 5.302E+04 (4) 1.29 (6) 19.41(17)
gaussian blur(IQ) 2.773E+04 (13) 144 (9) 20.06 (8)
saturate(/Q) 3.022E+04 (6) 1.47 (13) 1991 (12)
glass blur(/Q) 2.772E+04 (14) 1.45(11)  20.01 (9)
spatter(Con) 2.909E+04 (9) 1.48 (14) 19.93 (11)
defocus blur(/Q) 2.690E+04 (16) 1.48 (16) 20.37 (3)
pixelate(/Q) 2.639E+04 (18) 1.55(18) 20.38 (2)
brightness(/Q) 2.926E+04 (8) 1.53(17) 19.70 (14)
frost(IQ) 2.788E+04 (12) 1.41(8) 18.75(19)
elastic transform(Geo)  2.588E+04 (19) 1.48 (15)  20.13 (6)
jpeg compression(/Q)  2.660E+04 (17) 1.55(19) 20.24 (5)
snow(Con) 2.789E+04 (11) 1.46(12) 19.13 (18)

Corruption WD(?1) MI() MDL(1)
fog(1Q) 2.925E+04 (5) 0.31 (4) 17.39 (1)
impulse noise(RN)  1.034E+05 (1) 0.19 (3) 15.07 (9)
stripe(Con) 5.861E+04 (2) 0.03(1) 14.78 (10)
glass blur(/Q) 1.968E+04 (6) 0.64 (6) 16.88 (2)
brightness(/Q) 4.946E+04 (3) 0.16 (2) 14.27(13)
motion blur(/Q) 1.699E+04 (7) 1.10 (8) 16.08 (4)
spatter(Con) 3.040E+04 (4) 0.96 (7) 15.61 (8)
zigzag(Con) 1.213E+04 (9) 1.34 (9) 15.75 (6)
canny edges(Con) 1.622E+04 (8) 0.48 (5) 13.02 (14)
dotted line(Con) 1.101E+04 (10) 1.54 (11)  15.61(7)
shear(Geo) 8.766E+03 (13) 1.87(14) 16.24(3)
rotate(Geo) 8.058E+03 (14) 1.63 (12) 16.01(5)
shot noise(RN) 1.004E+04 (11) 1.49 (10) 12.70 (15)
translate(Geo) 8.894E+03 (12) 1.71 (13) 14.30 (12)
identity(Geo) 6.673E+03 (16) 2.09 (16) 14.48 (11)
scale(Geo) 7.627E+03 (15) 1.88 (15) 12.29 (16)

CDR also reflects model’s classification performance for the
corruption types. Figure: 4a shows that top-ranking corrup-
tions are in the lowest F1-score group and vice versa. (See
the MNIST-C results in supplementary material.)

In comparison to the performance in (Mu and Gilmer 2019),
Conv3(GAN) model shows a similar test accuracy for the
lowest CDR such as impulse noise of MNIST-C. Addition-
ally comparing to the results by Corruption Error (CE) in
(Hendrycks and Dietterich 2019), some interesting points
are found. For IMAGENET-C result by AlexNet’s CE, the
corruption types of the highest scores are impulse noise, shot
noise, gaussian noise, while those with the lowest scores are
brightness, jpeg, elastic transformation. For the CIFARIO-
C results by HYBOOD’s CDR, impulse noise and gaus-
sian noise rank among the highest scores despite the differ-
ent corruption data, while jpeg and elastic transform rank
among the lowest scores.

Ablation Study

We modified the generalized linear models (GLMs) of the
base selective classifier to GAPLM as (Lin, Chen, and Yan
2014) describes that global average pooling by mlpconv lay-
ers provides a better confidence map than GLMs. Because of
the simplicity of HYBOOD sub-architecture, we compare
GAPLM to a high-level flatten linear layer. In Table 3, HY-
BOOD shows similar F1 by 0.30% on MNIST and a linear
model shows better F1 by 2.29% on CIFAR10 in the order of
10~%. As aresult, the cost of trainable parameters in the clas-
sification stage is decreased from 15,360 to 240 comparing
GAPLM to a linear model as global average pooling linear

Table 3: Performance comparison of HYBOOD trained on
MNIST and CIFAR10. Linear HYBOOD shows better classi-
fication performance, whereas GAPLM HYBOOD shows cost-
effective performance.

HYBOOD Performance
MNIST CIFARI10
GAPLM Linear GAPLM Linear
F1 0.9740 0.9769 0.6778 0.6933
Precision 0.9751 0.9771 0.6775 0.6931
Recall 0.9738 0.9769 0.6782 0.6937

classifier takes averaged latent features generated from nor-
malizing flow. Despite the downscaled latent features, the
performance loss is relatively small. Additionally, we com-
pare DIGLM (Nalisnick et al. 2019b) and proposed method
in supplementary material.

Conclusion

Using a simple and unified hybrid normalizing flow archi-
tecture, HYBOOD estimates covariate corruption and out-
of-distribution detection with generative density. As we have
shown in the results of corruption difficulty ranking, impulse
noise is a paramount corruption type in computer-vision
models. Robust deep generative models against real-world
sensor defects or intentionally corrupted data would have
impact on trustworthy Al research.
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